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Boundary Conditions
Poynting Vector
Transmission Line
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• The integral form of Gauss’ law for electrostatics is:

Proof of boundary conditions - Dn

∫∫∫∫∫ =
V

dVρAD d.
applied to the box gives

yxyxDyxD snn ∆∆=Ψ+∆∆−∆∆ ρedge21

0,0dAs edge →Ψ→z hence

snn DD ρ=− 21
The change in the normal component of D at a 
boundary is equal to the surface charge density

y∆

µ2,ε2,σ2
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2nD

z∆
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Proof of boundary conditions - Bn
• Proof follows same argument as for Dn

• The integral form of Gauss’ law for magnetostatics is

– there are no isolated magnetic poles

0d. =∫∫ AB

21

edge21 0

nn

nn

BB

yxByxB

=⇒

=Ψ+∆∆−∆∆

The normal component of B at a boundary is 
always continuous at a boundary
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Conditions at a perfect conductor
• In a perfect conductor σ is infinite
• Practical conductors (copper, aluminium silver) have 

very large σ and field solutions assuming infinite σ can 
be accurate enough for many applications
– Finite values of conductivity are important in calculating 

Ohmic loss

• For a conducting medium
– J=σE

• infinite σ⇒ infinite J
• More practically, σ is very large, E is very small (≈0) and J is finite
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• It will be shown that at high frequencies J is confined to a surface 
layer with a depth known as the skin depth

• With increasing frequency and conductivity the skin depth, δx
becomes thinner

Lower frequencies, 
smaller σ

Higher frequencies, 
larger σ

δx
δx

Current sheet

• It becomes more appropriate to consider the current density in 
terms of current per unit with:

0
A/mlim

→
=

x
x s

δ
δ JJ

Conditions at a perfect conductor
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• Ampere’s law:
AJDsH d

t
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A
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szzz xJyxJyxtDy ∆→∆∆→∆∆∂∂→∆ ,0,0As
szxx JHH =− 21 That is, the tangential component of H is discontinuous by 

an amount equal to the surface current density
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Conditions at a perfect conductor cont.
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Summary of Boundary conditions
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Reflection and refraction of plane waves

• At a discontinuity the change in µ, ε and σ results 
in partial reflection and transmission of a wave

• For example, consider normal incidence:
( )ztj

ieE βω −=waveIncident
( )ztj

reE βω +=waveReflected

• Where Er is a complex number determined by the 
boundary conditions
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Reflection at a perfect conductor

• Tangential E is continuous across the 
boundary 

• For a perfect conductor E just inside the 
surface is zero
– E just outside the conductor must be zero

ri

ri

EE
EE

−=⇒
=+ 0

• Amplitude of reflected wave is equal to 
amplitude of incident wave, but reversed in 
phase
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Standing waves
• Resultant wave at a distance -z from the interface is 

the sum of the incident and reflected waves

( )
( ) ( )

( )
tj

i

tjzjzj
i

ztj
r

ztj
i

T

ezjE

eeeE

eEeE

tzE

ω

ωββ

βωβω

βsin2

wavereflectedwaveincident,

−=

−=

+=

+=

−

+−

and if Ei is chosen to be real
( ) ( ){ }

tzE
tjtzjEtzE

i

iT

ωβ
ωωβ

sinsin2
sincossin2Re,

=
+−=

j
ee jj

2
sin

φφ
φ −
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Standing waves cont...

• Incident and reflected wave combine to produce 
a standing wave whose amplitude varies as a 
function (sin βz) of displacement from the 
interface

• Maximum amplitude is twice that of incident 
fields

( ) tzEtzE iT ωβ sinsin2, =
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Reflection from a perfect conductor
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Reflection from a perfect conductor

• Direction of propagation is given by E×H
If the incident wave is polarised along the y axis:

xixi

yiyi

HH

EE

a

a

−=⇒

=

( )
xiyiz

xiyixy

HE

HE

a

aaHE

+=

×−=×then

That is, a z-directed wave.

xiyiz HEaHΕ −=×For the reflected wave                                and yiyr EE a−=
So                                   and the magnetic field is 
reflected without change in phase

ixixr HHH =−= a
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• Given that

Reflection from a perfect conductor

2
cos

φφ
φ

jj ee −+
=

( ) ( ) ( )

( )
tj

i

tjzjzj
i

ztj
r

ztj
iT

ezH

eeeH

eHeHtzH

ω

ωββ

βωβω

βcos2

,

=

+=

+=
−

+−

As for Ei, Hi is real (they are in phase), therefore

( ) ( ){ } tzHtjtzHtzH iiT ωβωωβ coscos2sincoscos2Re, =+=
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• Resultant magnetic field strength also has a standing-wave 
distribution

• In contrast to E, H has a maximum at the surface and zeros 
at (2n+1)λ/4 from the surface:

( ) tzHtzH iT ωβ coscos2, =

Reflection from a perfect conductor

free space silver

resultant wave

z = 0

z [m]

E [V/m]

free space silver

resultant wave

z = 0

z [m]

H [A/m]
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Reflection from a perfect conductor

• ET and HT are π/2 out of phase(                                      )
• No net power flow as expected

– power flow in +z direction is equal to power flow in - z
direction

( ) tzHtzH iT ωβ coscos2, =

( ) tzEtzE iT ωβ sinsin2, =

( )2/cossin πωω −= tt
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Reflection by a perfect dielectric
• Reflection by a perfect dielectric (J=σE=0)

– no loss
• Wave is incident normally

– E and H parallel to surface
• There are incident, reflected (in medium 1)and 

transmitted waves (in medium 2):
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Reflection from a lossless dielectric
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Reflection by a lossless dielectric

• Continuity of E and H at boundary requires:
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• Similarly

Reflection by a lossless dielectric
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• Furthermore:
Reflection by a lossless dielectric
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Energy Transport - Poynting Vector

Electric and Magnetic Energy Density:

For an electromagnetic plane wave

( ) ( )
( ) ( )

cEB

tkxBtxB

tkxEtxE

z

y

00

0

0

=
ω−=

ω−=

where 
sin,

sin,

The electric energy density is given by

( )

EB

E

uE
c

Bu

tkxEEu

=
µ

=
µ

=

ω−ε=ε=

2

0
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0

22
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2
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1 is energy magnetic the and sin
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y

z

E

B
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Energy Transport - Poynting Vector cont. 

Thus, for light the electric and the magnetic field energy densities are 
equal and the total energy density is 

( )tkxEBEuuu BEtotal ω−ε=
µ

=ε=+= 22
00

2

0

2
0

1 sin

Poynting Vector                             :








×

µ
= BES

rrr

0

1

The direction of the Poynting Vector is the
direction of energy flow and the magnitude 











=

µ
=

µ
=

dt
dU
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E
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11

0

2

0

Is the energy per unit time per unit area 
(units of Watts/m2).
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Energy Transport - Poynting Vector cont. 

Proof:

( )tkx
c

E
c

E
cE

dt
dU

A
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µ

=
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=ε==

ε==
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so 

Intensity of the Radiation (Watts/m2):

The intensity, I, is the average of S as follows:
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E
tkx

c
E

dt
Ud

A
SI

0

2
2

0

2
0

2
1

µ
=ω−

µ
===



25
Microwave Physics and Techniques                UCSB –June 2003

Ohm’s law

EJ σ=

Skin depth

Current density decays 
exponentially from the 
surface into the interior of 
the conductor
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Phasors

Fictitious way of dealing with AC circuits

R=6 Ω

L=0.2 mH
+

-
νs(t)

( ) { }tjIeti ω= Re
LjR

V
I s

ω+
=

Measurable 
quantity Phasor (not real)
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Phasors cont.

Phasors in lumped circuit analysis have no space  
components

Phasors in distributed  circuit analysis (RF) have a space 
component because they act as waves  

( ) { }==ν β±         xjeVtx 0Re, tje ω ( )xtV β±ωcos0
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Displacement Current
Observe that the vector field               appears to form a continuation of the 

conduction current distribution.  Maxwell called it the displacement current, 
and the name has stuck although in no longer seem very appropriate. 

t
E

c ∂
∂1

We can define a displacement current density Jd , to be distinguished from 
the conduction current density J, by writing 

and define 

( )dJJ
c

Bcurl +
π

=
4 

t
E

J d ∂
∂

π
=

4
1

It turns out that physical displacement current lead to small magnetic fields 
that are difficult to detect. To see this effect, we need rapidly changing 
fields (Hertz experiment). 
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Displacement Current

Example:    I=Id in a circuit branch having a capacitor

○○
V

R

C

S

d

2a

( ) ( ) ( )
Cd

tQ
d

tV
tE ==

The displacement current density is given by

( ) ( ) ( )
Cd
tI

t
tQ

Cdt
tE

J d π
=

∂
∂

π
=

∂
∂

π
=

44
1

4
1
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The direction of the displacement current is in the direction of the current. 
The total current of the displacement current is 

Displacement Current

I
dC

IA
JAI dd =

⋅π
⋅

==
4

.

Thus the current flowing in the wire and the displacement current flowing in 
the condenser are the same.

How about the magnetic field inside the capacitor? Since the is no real 
current in the capacitor, 

t
E

c
Bcurl

∂
∂

=
1 

Integrating over a circular area of radius r,

( ) ( )

da
t
E

c
daBcurl

rSrS

⋅
∂
∂

=⋅ ∫∫ 1 
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Displacement Current

( ) ( )

rBdsBdacurlBshl

rCrS

⋅π=⋅=⋅= ∫∫ 2..
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t
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c
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tc

shr

rS

∂
∂π

=⋅
∂
∂

= ∫
21..

2

2222 41
a

r
c

I
C
I

cd
r

t
Q

Ccd
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=
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=
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∂π
=

∂
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=

Thus the magnetic field in the capacitor is 

( ) 22

2 242
ca

Ir
rB

a

r
c

I
rB =→

π
=⋅π

( )   
cr
I

rB
c

I
rB

242 =→
π

=⋅π (at the edge of the capacitor)

This is the same as that produced by a current flowing in an infinitely long 
wire. 
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xn-2 xn-1 xn xn+1 xn+2

un-2 un-1 un un+1 un+2

Wave in Elastic Medium

The equation of motion for nth mass is 

( ) ( ) ( )11112

2
2 +−+− +−=−+−−=

∂
∂

nnnnnnn
n uuukuukuuk

t

u
m

By expanding the displacement un±1(t)=u(xn±1,t) around xn, we can convert 
the equation into a DE with variable x and t.
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Wave in Elastic Medium

( ) ( ) ( ) ( ) ( ) ( ) ( ) K+∆±
∂

∂
+∆±
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∂
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1 2
1

x
x

txu
x

x
txu

txutxxutu
n

n

n

n
nnn

,,,,
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t

txu
m

∂
∂

∆=
∂

∂
∆

→
∂

∂
∆=

∂
∂ ,,,,

Define K ≡k ∆x as the elastic modulus of the medium and ρ = m/ ∆x is the 
mass density. In continuous medium limit ∆x 0, we can take out n.

( ) ( )
2

2

2

2

x

txu
K

t

txu

∂
∂

=
∂

∂
ρ

,,

We examine  a wave equation in three dimensions. Consider a physical 
quantity that depends only on z and time t. 
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Wave along z-axis

( ) ( )
2

2
2

2

2

z

tz

t

tz

∂
Ψ∂

ν=
∂
Ψ∂ ,,

We prove that the general solution of this DE is given by 
( ) ( ) ( )vtzgvtzftz ++−=Ψ ,

f and g are arbitrary functions.

Insert a set of new variables,

vtzandvtz +=η−=ξ     
Then

η∂
∂

+
ξ∂

∂
=

η∂
∂

∂
η∂

+
ξ∂

∂
∂

ξ∂
=

∂
∂

zzz
and

η∂
∂

ν+
ξ∂

∂
ν−=

η∂
∂

∂
η∂

+
ξ∂

∂
∂
ξ∂

=
∂
∂

ttt



35
Microwave Physics and Techniques                UCSB –June 2003

Wave along z-axis

Ψ







η∂
∂

−
ξ∂

∂
=Ψ








η∂
∂

+
ξ∂

∂
22

thus 0
2

=Ψ
ξ∂η∂

∂

From this equation:

( )ξ=
ξ∂
Ψ∂

→=
ξ∂
Ψ∂

η∂
∂

F0

( ) ( ) ( ) ( ) ( )η+ξ≡η+ξξ=Ψ→ξ=
ξ∂
Ψ∂ ∫ gfgdFF

Thus
( ) ( ) ( )vtzgvtzftz ++−=Ψ ,
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Radiation

ρ

F

Great Distance
β

E
H

Charges and currents Approximate plane waves

Great Distance β
E

H

Approximate plane wavesAperture fields

E
H
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Radiation Antennas

Transmission line fed dipole Transmission line fed current loop

Slots in waveguide
Waveguide fed horn
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Radiation
In the time domain the electric scalar potential φ (r2,t) and the magnetic vector 
potential A(r2,t) produced at time t at a point r2 by charge and current distribution ρ(r1) 
and J(r1) are given by

( ) ( )
dv

r
crtr

tr

v
∫ −ρ

πε
=φ

12

121

0
2 4

1 ,,

and

( ) ( )    dv
r

crtrJ
trA

v
∫ −

π
µ

=
12

1210
2 4

,,

Sinusoidal steady state

( ) ( )
dv

r
er

r

v

rj

∫
β−ρ

πε
=φ

12

1

0
2

12

4
1

( ) ( )    dv
r
erJ

rA

v

rj

∫
β−

π
µ

=
12

10
2

12

4

12rje β− is the phase retardation factor
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   AcurlB =
We start with

and AjgradE ω−φ−=  

Charge conservation:

   0=
∂
ρ∂

+
t

Jdiv
Sinusoidal steady state     0=ωρ+ jJdiv

Because ρ and J are related by the charge conservation equation, φ and A are also related. In 
the time domain, 

   000 =
∂
φ∂

εµ+
t

Adiv
Sinusoidal steady state     000 =φεωµ+ jAdiv

With ω ≠ 0

    

00εωµ
−=φ

j
Adiv

Substituting for φ:
AcurlH  

0

1
µ

=

AjAdivgrad
j

AjAdivgrad
j

E

ω−
β
ω

−=

ω−
εωµ

=

     

  

2

00

1
β=ω

εµ
= cc   

00

1
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Near and far fields
We consider the transmission characteristics of a particular antenna in the form of a straight 
wire, carrying an oscillatory current whose length is much less than the electromagnetic 
wavelength at the operating frequency. Such antenna is called a short electric dipole.

θ
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z

φ

r
P

L I

ILPj =ω

strength of the radiated field

Avoiding spherical polar coordinates

Coordinates transformation
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The components of the dipole vector in these coordinates are 
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Dipole radiation
The retarded vector potential is then

 dv
z

Je
A

v

zj

∫
β−

π
µ

=
4

0

Where we used              . We also replace             by     and obtain 
c
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=β ∫
v

Jdv              PjIL ω=
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


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Thus the radiation component of the magnetic field has a  y component only given by

z
eP

jjH
zj

x
y π

ωβ−=
β−
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Dipole radiation
Electric field:

( )
z

ejPj
z

A
divA
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4
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We start with

then

The first term we require for the electric field is simply




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
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The second term we require for the electric field is 
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
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Dipole radiation
Electric field:

The electric field is the sum of these two terms. It may be seen that the z components 
cancel, and we are left with only x component of field given by

z
eM

E
zj

x
x π

µω
=

β−

4
0

2

Note that this expression also fits our expectation of an approximately uniform plane wave. 
The ratio of electric to magnetic field amplitudes is 

η=
ε
µ

=
εµ

µ=µ=
β
ω

µ=
βω

ωµ
=

0

0

00
000

2
0 1

c
H
E

y

x

as expected for a uniform plane wave.
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⊗

Dipole radiation
We will now translate the field components into the spherical polar coordinates.

P
H

E

β

r

oIL

θ

in radial direction

in x direction

in y direction

since                           we haveθ−= sinPPx

r
eP

EE
rj

x π
θµω

==
β−

θ 4
0

2 sin
and

r
eP

HH
rj

y π
θωβ−

==
β−

φ 4
sin

The Poynting vector                     is in r direction and has the value  ( )*HE ×
2
1

( )2

223
0

42 r

P
SS zr

π

θβωµ
==

sin

This vector (real) gives the real power per unit area flowing across an element of 
area ⊥ to r at a great distance.
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Radiation pattern

θ

Dipole axis

Dipole
length is proportional to power density per 
unit area at some fixed distance.

Note: No radiation takes place along the dipole axis, and the radiation pattern has axial 
symmetry, with maximum radiation being in the equatorial plane. 

Because of the non-uniform nature of the pattern we have the concept of antenna gain, 
which for a lossless antenna is the power flow per unit area for the antenna in the most 
efficient direction over the power flow per unit area we would obtain if the energy were 
uniformly radiated in all directions. The total radiated power is

{ }( )φθθℜ= ∫ ∫
π

=θ

π

=φ

ddrSeW r sin2

0

2

0

 ∫∫
π

=φ

π

=θ

φθθ
π

βωµ
=

2

00

3
2

23
0

32
dd

P
sin

2

23
0

12π

βωµ
=

P
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The average radiated power per unit area is

22

23
0

2 484 r

P

r

W

π

βωµ
=

π

Hence the antenna gain, g defined by

g = 
radiated power/unit area in the most efficient direction

average radiated power/unit area over a large sphere

becomes

2
348

32 23

22

22

23
=

βω

π
π

βω
=

P

r

r

P
g This result is the gain of a small dipole. 
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Radiation resistance
Recall 

π
ωβµ

=
π
βωµ

=
1212

22
0

23
0 LIP

W

The radiation resistance Rr is defined as the equivalent resistance which would absorb the 
same power W from the same current I, i.e.

2

2IR
W r=

Combining these results we obtain

π
ωβµ

=
6

2
0 L

Rr

Using 000012 εµ=ηεµ=λπ=ββ=ω                  cc ,, and                           , we find        

( )    
2

2

3
2

6








λ
η






 π

=β
π

η
=

L
LRr ( ) ( )Ωπ≈ηΩβ≈ 12020 2    LRr
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⊗

θ
ψ

o
r1

r2

r12

y2 z2

x2α
z1

P1

Far field point

Consider an arbitrary system of radiating currents

We start with the vector potential

( ) ( )
dv

r
erJ

rA

v

rj

∫
β−

π
µ

=
12

10
2

12

4

We will regard r12 fixed. For P2 a 
distance point, we replace r12 with r2

( ) ( ) dverJ
r

rA rj

v

12
1

2

0
2 4

β−∫π
µ

=So

Approximations for r12 in                   require more care, sine phase differences in radiation 
effects are crucial. We use the following approximation

12rje β−

1212 rrr += 1212 rrr +ψ≈ cos ψ−≈ cos1212 rrr

( ) ( ) dverJ
r

e
rA rj

v

rj
ψβ+

β−

∫π
µ

= cos1
2

1
2

0
2 4

P2

factor                       expresses the 
phase advance of the radiation from 
the element at P1 relative to the phase 
at the origin. 

ψβ+ cos1rje
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( )  ℜ
π

µ
=

β−

2

0
2 4

2

r
e

rA
rjWe have 

where 
( ) dverJ rj

v

ψβ∫=ℜ cos1
1 is called the radiation vector. It depends on the

internal geometrical distribution of the currents 
and on the direction of P2 from the origin O, but not 
on the distance.

The factor                       depends only on the distance from the origin O to the field point 

P2 but not on the internal distribution of the currents in the antenna. 2

0
4

2

r
e rj

π
µ β−

The radiation vector           can be regarded as an effective dipole equal to the sum of the

individual dipole elements Jdv , each weighted by phase factor                     , which depends on 

the phase advance of the element in relation to the origin, and direction OP2.

ℜ

ℜ
ψβ cos1rje

ψβ cos1r

 φ

β−

θ ℜ
π

β=
r

e
jH

rj

4
and   θ

β−

φ ℜ
π

β−=
r

e
jH

rj

4

 φθ η= HE and θφ η−= HE  
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Small circular loop

r y

x

z

o
I

P2

a
φ′

θ

Calculate the radiated fields and power at large 
distance.

Using the symmetry the results will be independent of 
the azimuth coordinate φ. 
The spherical polar coordinates of a point P1 at a 
general position on the loop are (a, π/2, φ′).

We have φ′θ=ψ cossincos 

ψ being the angle between OP1 and OP2 with a unit 
vector in the direction of OP1 (cos φ′,sin φ′,0) and 
a unit vector in the direction of OP2
(sinθ,0,cosθ):

The radiation vector is then given by

( ) ( ) dveurJ aj φ′θβ
φ∫ ⋅=θℜ cossinˆ, 10 ( ) φ′θβ

φ∫ ⋅=θℜ cossinˆ, ajeuIdr10
filamentary current

( ) φ′φ′=θℜ φ′θβ

π

∫ deIa aj cos, cossin

2

0

0 ( ) ( ) φ′φ′φ′θβ+≈θℜ ∫
π

dajIa coscossin, 10

2

0( ) θβπ=ℜ sin20 Iaj θ,φ
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Electric and magnetic fields
( ) rj

φ

rj
e

r
Ia

r
ej

H β−
β−

θ
θβ−

=ℜ
π

β
=   

44

2 sin ( ) rje
r
Ia

HE β−
θφ

θηβ
=η−=

4

2 sin

Poynting vector
( )

2

224

322
1

r
Ia

HES r
θηβ

=−= θφ
sin*

and

Total power radiated

θφθ= ∫ ∫
π

=φ

π

=θ

rddrSW r sin
2

0 0
Substituting for Sr and using ( )θ−θ=θ 33

4
13 sinsinsin

( )
12

42 aI
W

βπη
=

Radiation resistance

2

2
1

IW rℜ= ( )4

6
ar β

πη
=ℜ ( ) ( )Ωπ=ηΩβπ=ℜ 12020 42   ar


